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Abstract This paper is concerned with forecasting the profile of interest rates over time. Conventional
time series methods have been generally unsuccessful in forecasting interest rates, with fitted ARIMA models
being close to random walks. The method proposed here is to forecast the whole of the yield curve, from which
forecasts of individual rates may be extracted. The methodology is motivated by the following observations.
Over time, the efficient markets hypothesis suggests that all avaitable information about a bond will be rapidly
incorporated into its market price {(assuming free information, zero transactions cost and rational behaviour).
One implication of this hypethesis is that spot rates will follow a random walk. This suggests that the shape of
the yield curve may fluctuate randomly. Thus, a yield curve estimated as a specific functional form has
parameters that may foliow a random walk. If yield curves or their estimated parameters da not follow random
walks, then arbitrage possibilities may exist. In the maturity dimension, bonds of close maturity are close
substitutes, so market efficiency arguments require that the vield curve be "smooth” across maturities. If an
observed yield for a specific maturity lies below the yield curve, then this could be sold and be replaced by
lower priced (higher yield) bonds, thereby improving the average yield of a portfolio while maintaining the
same duration. Hence, interest rates may be random walks over time, but yields will change smoothly with
maturity at a particular point in time. This paper exploits this regularity 1o obtain improved forecasts of interest
rates.

1.1 Introduction observed maturities, so that splines and polynomials
The method proposed to exploit the smoothress that tend to bend towards the end of the maturity
across maturities of the yield curve can be ranges were unsuitable functional forms, and this led

summarised by the following steps: to their choice of the Laguerre functionaf form that
1. Estimate a parametric form for the yield curve at asymptotes at long maturities.
time t, with estimated parameters x,.
2. Fit a time series madel to the sequence {X;.%s... The functional forms for the yield curve considered
JXr}, for example a VAR(T) x, = A% T4, in this study were the Laguerre form used by Lau
3.  Use the model to forecast X7y {1983] and Nelson and Siegel [1987] and a simple
4. Construet the forecasted yield curve at time T+k. polynomial functional form:
5. Extract the implied forecast of the spot inferest

rate.
In the next section, methods for fitiing yield curves vim) =P exp[w E}—} + 53[£]exp(w ik ]+ Bi(D)
are outlined, and then the proposed method is applied Ba B2 B2
to forecasting the yields on Australian Government
Bonds. The forecasting performance is then y(m) = B,m +B,m ™+ By log.(m)+Py o))
evaluated. - ’

where v(m) is the yield, m is the maturity of a bond,

1.2 Fitting Yield Curves and the B's are parameters to be estimated.

Attempts to fit yield curves have a long history. The
methods used include freehand  curves
{(Durand[t941]}, polynomia!l and exponential splines
(McCulloch{1971], Shea{1984, 1985] inter alia) and

parametric forms based on polynomial regressions These sheets : . .

i provided the yield to maturity for all
(EC*“’]S, and Elliot [1976], Chambers et at [1984] Commonwealth Government Bonds from week 12,
inter alia). Lau [1983] and Nelson and Siegel [1987] 1987 to week 39, 1988, giving in all 80 weekly
have estimated parsimonious models of the yield : " e

curve based on Laguerre functions. The method

1.3 Australian Government Bond Yield Curves
The data used for this study were exiracted from the
Bond Sheets of a leading Australian bond deaier.

observations. Maturities range up to 18 years. A
; . number of "outliers” were identified and removed
chosen to fit the yield curve will to some extent be from the analysis, These were the low coupon bonds
governed by the ultimate use of the estimated curve. (< 7%) issued before November 1977, and the 12.5%
if it required as a simple descriptive device (such as M“;arch 1;)97 bond issued in Octobe} 1986 wl;ose
required in the financial press) then most methods yields to .maturity were "too low". If after ta;c yields
will provide a good fit to the observed yields. Neison rather than gross vields were used .in the analysis the:’:
and Siegel's purpose was to exiract estimates of the these obse va atie:;s may no longer be outliers. The
long term bond rate by extrapolating beyond their models were estimated using rt:’he non-iinear‘least

1248



squares option in SHAZAM (see White [1978]). A
major problem was encountered in that the estimated
Laguerre models Were occasionally
overparameterised, with large changes in 5; giving
essentially the same fit. In these cases the parameter
was constrained to zero (a restriction supported by
tHkelihood ratio tests). The Laguerre functional forms
actually fit the observed yields better, and are in fact
preferred functional forms to the polynomial form
when non-nested hypothesis tests are performed. The
over-parameterisation problem makes the Laguerre
form unsuitable for the forecasting exercise, so the
remainder of this paper focuses oo the resulis from
estimating the polynomial form. The polynomial
form provides a reasonable within sample fits, with
the average standard error of fit over the 80 periods
being 14.52 basis points {the smallest is 8.30 basis
points and the largest is 30.32 basis points). The fit of
the estimated model is illustrated in Figures 1-4 using
the last four weeks of the sample data. The estimated
parameters and the standard error of estimate for each
firted yield curve are presented in the Appendix in
Tabie 3. Although all the parameters arc clearly not
needed at each point in time, the estimates of By, Ba,
B and B, are significant at the 1% level for 27, 29, 69
and B0 time periods respectively.

The parameter estimates show marked time
dependence, as is evident by the autocorrelation
functions reported in Table 4. A vector
autoregressive model of order 3 {VAR(3)) was fitted
to the seguence of four estimated parametars of By,
Ba, 85 and (s as well as the standard error of estimate
s. There are some significant interactions between the
variables that are summarised in Table 1

Table ! Interactions in VARG

Equation for etermined by R-
Bl Ba. Bj and !34 0.80
Bz Bs 0.64
B {2, By and By (.94
By B, By and By 0.93
8 § 0.50

A restricted VAR model (RVAR) was also fitted 1o
the estimated parameters, with the optimal model
being chosen using the Schwartz criterion. This
resulted in a VAR of order one with only seven
parameters being chosen. As an ilustration, the
parameters of the preferred model, estimated over all
eighty observations are given in Table 2,

Table 2; Estimated RVAR parameters

By B2 P By §

By 0.770 0 i g 0

Ba ] 0 (.231 0 0

5 -0.122 0 0.982 0 0

B 0 0 0 0.955 i
s g G -0.203 O (0.449
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The forecasting performance of these models is
evaluated using two metrics - the ability to forecast
the actual vields on bonds and the ability to forecast
the parameters of estimated yield curves. The last
eight observations are used to evaluate the
forecasting performance. The estimated VAR models
were used to obtain forecasts of the parameters for
one and two siep horizons, and zll models were re-
estimated prior to forecasting. The estimated
parameters were used to derive a forecasted yield
curve.

Figures ! to 4 illustrates, for the last four weeks of
the sample period, the actual yields, the polynomial
model fitted to the actual yields, and the one and two
step forecasted yields derived from the VAR(3)
model. The forecasted vield curves are in the "ball
park" and appear to converge to the fitted curve as
the forecast horizon shortens.

Some summary statistic for the performance of the
VAR models and the naive model for forecasting the
parameter values of the fitted yield curves from week
32/88 to week 39/88 are presented in Table 6. One
and two step forecast horizons are presented and alt
models were re-estimated prior to forecasting. The
fitted parameter values are treated as the true values
in this evaluation, and there appears to be a small
gain in terms of root mean square error in using the
VAR models over the naive model.

Some summary statistics for the forecasting
performance of the two VAR medels and a naive no-
change mode! for the actual yields to maturity are
reported in Table 3. In terms of the root mean square
error of the forecasts, there appears to be no overall
gain in the forecasting performance in using the VAR
models over the naive forecasting model. For one
step forecasts the VAR3 (RVAR) forecasts have a
smaller root mean square error than the naive
forecasts for 2 (2} weeks, whereas for the two step
forecasts the VAR3 {(SVAR) root mean square error
is smaller for 5 {1} weeks.

i.4 Conclusions

A methodology has been developed to  obiain
forecasts of the whole yield cuwrve. Using ihis
method, the forecasts appear to perform at least as
welt as the naive no-change forecasts, and the method
warrants further evaluation. Areas worth further
investigation include considering richer functional
forms used to model the vield curve need to be
considered and the time series methodology used to
forecast the parameter values. In the end, a proper
evaluation of the method requires a careful
specification of the end use of the forecasts.
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1.6 Appendix
Table 3: Estimated Parameters from Polvnomial Functional Form

Week B B B P 5 R” N
12/87 0.094 -0.059 -0.7787 14,623 0.125 0.994 89
13/87 0.061 -0.028 -0.565 14.370° 0.160 0.938 89
14/87 0.0417 -0.017 -0.4827 14.203 0.102 0.933 39
15/87 0.036 -).088 -0.563 143017 0.109 0.397 88
16/87 0.055 -0.082° 0521 13.953° 0.105 0.379 88
17/87 0,033 -0.0327 -0.336° 13.942 0.085 0.860 88
18/87 0.001 ~(L.007" -0.158 13.554 0.083 0.736 83
19/87 -0.037 -0.165 0.112 13.137 0.116 0.634 87
20/87 -0.004 -0.040 0.006 13.074 0111 0.079 87
21/87 3.011 -0.0757 -0.033 13.431 0.115 0.097 87
22/87 -0.008 -(.003 0.077 13.354 0.106 04.236 87
23/87 -0.019 -(+.319 0.202" 13.136 0.150 0.578 87
24/87 06T -0.023 0.276 12.679 0.136 0.769 87
23/87 -0.016 -0.0237 0.1797 13.1407 114 0.732 87
26/87 -0.037 -0.008 0245 12.923° 0.159 0.570 87
27187 -0.036" 0.001 0,262 12.917 0.212 0.462 27
28/87 -(3.007 -0.076 g.104 12.735 0.251 40.410 86
29/87 -0 018 -0.060 .240° 12671 0.143 3.750 86
30/87 -0.028" -0.022 0.350° 12.738 0.137 0.835 86
31/87 00427 0.055 0547 12485 0,187 0.830 36
32/87 -0.063 0.060" 0.662° 12,2607 0.166 0.889 86
33/87 -0.004 0.024 0.376 12.287 0.128 0.905 87
34787 6.012 0.035% 0.371 12.143 (.187 0.845 87
35/87 {1 .020 021 0.332 12.272 0,143 0.898 87
36/87 0.034" 0.058 0.24% 12216 0.163 0.826 86
37187 0.826 0086 0,345 11.656 0.205 0.802 86
38/87 0.6357 0.059 0315 11.428 0.180 0.855 25
39/87 0.071 (.025" 0,166 11.615 0.165 (}.878 H)
40/87 0.070" 0.0t7" 145" 11.680 0.235 0.760 86
41/87 0.031 -0.030 0,322 11938 0.174 ).894 85
42/87 0.010 0.116" 0.463 12,451 0.197 0.850 25
43/87 -0.004 -0.0917 0.387 13.453° 0.149 0.927 85
44/87 S0.047 -0.063" G.691 12,798 0.i46 0.962 85
45/87 -0.0857 0.229 1415 11.390° (.303 0527 85
46/87 -0.108 0110 1.203 11,7467 0.194 0.960 85
47/87 -0.0536" -0.085 1.126 11.437 0,170 0.967 3
48/87 -(.126 0.354 1.671 10.820° 0.180 04.976 83

# = Significant at 5% level, * = significant at 1% level
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Table 3 continued: Estimated Parameters from Polynomial Functional Ferm

Week & 8: B; By 3 R* N
45/87 <0113 0.336 1.643 10.678 0.207 06.971 83
50/37 -0.077 0.241 1,454 10.545 G173 (G.979 83
51/37 0.006 0.094" 0.602 10.868 0.145 0.979 83
52/87 0.01% 0.078° G.814° 10.984" 0.145 0.578 g3
1/83 0.004 0.089 0878 10.947 0.148 0.978 83
2/88 0.016 0.683 0.827 {6.891 0.164 0973 23
3/38 -0.601 0.112 (.50 16557 0.152 0.976 83
4/8% 0.017 0.051 0.697 10,757 0.149 0.970 82
5/38 -0.012 0.049 009 10.562 6.133 0.978 ]2
6788 -0.0337 0.056" 0.840 11.047 §.159 0.968 87
7/88 S0.047 0.063 a6l 11.0007 D.138 0.973 82
2/8% G016 (.041 5407 11,157 0153 (.950 82
5/88 0015 0.038 0T 10817 {.148 00.964 82
10/%8 0.008 0.015 G.57% 10.971 0.174 0.952 82
11783 0.008 0.021 0.49% 16871 0.144 0.952 81
12/8% 0.052 46.017 0.444 10.636 0.168 0.953 51
13/68 0.054" 0015 0.406 10.617 0.171 0.946 81
14/88 0.07T 0,005 0.333 10487 0.149 4.957 78
157438 0.07% -0.008 0.195 1857 0.140 0.954 78
16788 0.049 G.024 0,262 10.744 0113 (4.939 77
17/88 0.020 0.070 0.533 10.456 6,122 0.963 77
18/8% -0.014 -0.067 0.547 113317 0.134 0.961 77
15/83 -0.031 0.015 §.436 11475 6337 £.506 78
20/88 -0.001 0.038 0.176 RN 0.104 0.718 78
21/88 -0.027 8,044 0.270 2207 p.108 0.744 78
22/88 -0.037 6.0544 0.357 12,008 0.120 0.823 78
23788 0.0 0.083 0.574 770 0.176 0,795 78
24788 -0.032 0.042 0326 SNEYA 6.147 0.721 78
235/38 0.000 0.015 0.257 11.641 0.1536 0.338 78
26/88 4,002 8.007 0.110 11,758 6,105 0.624 73
27/68 -0.003 0.004 0.038 11766 0.103 0.471 78
28/83 -0.011 0.00647 0.1t 17,8547 0.101 0.504 78
29/88 05.002 -0.018 -0.072 12.145 0.105 0.058 73
30/88 0.608 -0.008 -0.046 12.13% 0112 nols 73
31/8% -(.001 -0.003 -0.001 121307 0.108 0.009 75
32/88 -0.012 0.603 0.036 12378 0.107 0.042 73
33/88 -0.036 0.022 6.073 12,333 0.102 0.361 74
34/88 06327 0.000 -0.066 12.582° 0.120 0.722 74
35/88 -GGl -0.012 078 12 606 §.124 0.806 74
36/88 -0.025 0,004 L0166 12614 0.139 0.811 74
37/88 0.016 -0.077 0416 12.883 0,136 0.85% 74
18/883 -0.004 1018 -0.347 R 0.125 0.915 73
39/88 0.006 -0.062 0,522 13,396 0.132 0.937 73
# = Significant at 3% level, * = signilficant at 1% level
Table 4: Autscorrelation Coefficients
Lag ] o By [ s

i 0,770 5478 0504 0,004 0.568

2 0553 0.283 5776 (3 B18 0416

3 0.330 0.444 0.695 0.747 0.474

4 0,166 0.374 0517 0.669 0.469

5 -0.044 0187 4.519 0,608 0.475

5 5271 0190 0,424 0.545 0.284

7 -0.350 0,968 0.385 0.515 0.219

8 -0.304 0.142 0.330 0.487 0.278

g -0.383 0.140 0.290 0.469 0.240

10 6,259 0.136 0.252 0.437 0.129




Table 5: Summary Statistics for Parameter forecasts for the weeks 32/88 to 39/88

Method Statistic By B, Ba By s
1-Step
Naive Mean -0.001 0.007 0.063 -0.158 -0.003
Sb 0.020 0.033 0.111 0.181 0.009
RMSE 0.020 0.038 0.129 0.241 6.010
YVAR(3) Mean 0.008 -0.021 -0.038 0.024 -0.009
D 0.018 0.039 0.118 0.220 0.010
RMSE 0.020 0.038 0.129 0.241 0.010
RSVAR(D) Mean 0.001 -0.018 0.062 -0.123 -0.008
5D 0.018 0.024 0.093 0.163 0.008
RMSE 0.018 0.030 0.116 0.204 0.011
2-Step
Maive Mean 0.001 0.00% 0.103 -0.251 -0.004
SD 0.022 0.027 0.117 0.124 0.013
RMSE 0.022 0.029 0.156 0.280 0.013
YVAR(3) Mean 0.017 -(1L033 -0.080 0.057 -0.014
SD 0.016 0.030 0.108 0.169 0.012
RMSE 0.023 0.045 0.134 0.178 0.018
RVAR(D) Mean 0.003 -0.015 0.117 -0.233 -0.008
SD 0018 0.622 0.101 0.139 0.008
RMSE 0.019 .027 0.155 0.271 0.011

Note : The estimated parameters are treated as the true values in computing the root mean square error.

Table 6: Summary Statistics for forecasts of the Yield Cuarves Forecasts for the weeks 32/88 to 39/88

Method | Statistic 32 33 34 35 36 37 38 38
Fitted Mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SD 0.104 0.100 0116 0.121 0.135 0.132 0.121 0.128
RMSE 0.104 0.100 0.116 0.121 0.135 0.132 0.121 0.128
i-Step
NMaive Mean -0.246 0.114 -0.069 $4.040 0.018 0010 | 0035 | -0.295
SD 0.113 0.119 0.108 0.137 0.143 0.154 0.181 0.172
RMSE 0271 0.165 0.181 0.143 0.145 0.189 0.184 0.341
VAR(3) | Mean -0.259 0.186 -0.161 0.123 0.126 -0.012 0.085 ~0.150
5D 0.289 0.109 4.174 (.146 0.167 0.143 0.166 138
RMSE 0.467 0216 0.209 0.191 0.209 0.144 0.187 218
RVAR | Mean -0.260 0.114 -0.048 0.059 0.026 -0.079 | -0.009 | -0.276
SD 0.322 0.119 0.215 0.192 0278 0.172 0.187 0.224
RMSE 0414 0.163 0.221 0.201 0.27¢ 0.189 0.187 0.356
2-Step
Naive Mean -0.244 | -0.127 0.044 -0.028 0.061 -0.087 | -0.140 | -0.336
5D 0.135 0.122 0.217 0.217 0.163 0.161 0.177 0.235
RMSE 0.279 0.176 0222 0.219 0.174 0.133 0.225 0.413
YAR(3) | Mean -0.254 | -0.077 0.056 -0.004 0.241 0.118 0.088 -0.098
3D 4.617 0.11% 0.173 0.164 0.202 0.146 0.144 0157
RMSE 0.667 0.142 0.182 0.164 0315 0.188 0.169 0.135
RVAR | Mean -0.246 | -0.103 0.057 0.001 0.083 -0.040 | ~0.092 | -0.299
Sb 0.332 0.158 0.257 0.300 0.301 0.199 0.255 0.268
RMSE 0413 0.190 0.263 0.300 0312 0.203 0.271 0.402

Note: The actual observed yields are treated as the true values in computing the root mean square error.

1252




Filgure 1: forecasis for week J6/88
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